4 research outputs found

    Nutritional Systems Biology Modeling: From Molecular Mechanisms to Physiology

    Get PDF
    The use of computational modeling and simulation has increased in many biological fields, but despite their potential these techniques are only marginally applied in nutritional sciences. Nevertheless, recent applications of modeling have been instrumental in answering important nutritional questions from the cellular up to the physiological levels. Capturing the complexity of today's important nutritional research questions poses a challenge for modeling to become truly integrative in the consideration and interpretation of experimental data at widely differing scales of space and time. In this review, we discuss a selection of available modeling approaches and applications relevant for nutrition. We then put these models into perspective by categorizing them according to their space and time domain. Through this categorization process, we identified a dearth of models that consider processes occurring between the microscopic and macroscopic scale. We propose a “middle-out” strategy to develop the required full-scale, multilevel computational models. Exhaustive and accurate phenotyping, the use of the virtual patient concept, and the development of biomarkers from “-omics” signatures are identified as key elements of a successful systems biology modeling approach in nutrition research—one that integrates physiological mechanisms and data at multiple space and time scales

    Example of a future multiscale model in the area of insulin resistance, built from three existing models [78]–[80].

    No full text
    <p>(A) schematic overview of the different model layers. (B) Individual model layers plotted along their time–space dimensions. Model 4 denotes a new model that enables the incorporation of tissue-specific gene expression data, which form an important data source from the nutritional wet lab.</p

    Lipid transport in the body: modeling of apoB100-containing lipoproteins.

    No full text
    <p>(A) apoB100 carrying lipoproteins are synthesized in the liver by stepwise addition of lipids to the growing particle. Once secreted, lipoprotein lipase (LpL) and hepatic lipase (HL) may hydrolyze the triglycerides. Intermediate- and low-density lipoproteins (IDLs and LDLs) may be taken up by the LDL receptor. (B) The outline of compartmental models describing lipoprotein kinetics consists of subsystems of tracer molecules (e.g., leucine and/or glycerol), which can be replaced by forcing functions from sample data. A time delay represents the incorporation of the tracer molecules into proteins and triglycerides and is modeled as a series of compartments. The complexity of the blocks representing VLDL<sub>1</sub>, VLDL<sub>2</sub> (and IDL and LDL) varies with the studied individuals, the length of the study, and the infusion (bolus or primed constant).</p
    corecore